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Color constancy is the ability to recover a stable perceptual estimate of surface reflectance, regardless of the light-
ing environment. However, we know little about how observers make judgments of the surface color of glossy
objects, particularly in complex lighting environments that introduce complex spatial patterns of chromatic varia-
tion across an object’s surface. To address this question, we measured thresholds for reflectance discrimination
using computer-rendered stimuli under environmental illumination. In Experiment 1, we found that glossiness
and shape had small effects on discrimination thresholds. Importantly, discrimination ellipses extended along the
direction in which the chromaticities in the environmental illumination spread. In Experiment 2, we also found
that the observers’ abilities to judge surface colors were worse in lighting environments with an atypical chromatic
distribution.
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1. INTRODUCTION

Color constancy is the visual ability that allows us to judge the
surface colors of objects under various lighting environments.
To achieve color constancy, the visual system needs to cancel
the influence of illumination and retrieve an estimate of surface
color. However, such a separation is an under-constrained prob-
lem because we typically have access to only the cone signals
elicited by the illumination once it has been spectrally modified
by surface spectral reflectance. Considerable past research has
been conducted to identify mechanisms of color constancy,
as recently summarized by Foster [1], but it is not yet fully
understood.

One of the limitations of past studies is the use of simplified
stimuli where objects were typically two-dimensional (2D),
matte and uniformly illuminated by a single light source
[2,3]. Although such stimuli allow careful experimental con-
trol, they lack some of the important features of surfaces
and illuminants that potentially offer cues for color constancy.
One important property of objects in this regard is their spec-
ularity. The matte objects that have been used extensively in
past studies exhibit only a diffuse reflection whose spectral
content is the product of the spectral energy distribution of
the illumination and the surface spectral reflectance of the ob-
ject. By contrast, glossy objects additionally exhibit a specular
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reflection that carries direct information about the illuminant
spectrum, and can therefore provide information about the
lights incident on the object’s surface. Thus, color constancy
for glossy objects may be supported by some additional mech-
anisms that are not available for matte stimuli.

Over the past two decades, color vision researchers have
attempted to address these questions by utilizing more realistic
objects in three-dimensional (3D) setups. Moreover, recent
advances in computer graphics techniques have enabled sub-
stantial numbers of experiments to investigate various features
of material perception [4-6]. In addition to studies on gloss and
lightness perception [7-17], there is an increasing number of
studies on color perception [18-26].

Nevertheless, despite the significant methodological
advances, even these more recent studies have typically ignored
the fact that objects in the natural world are not simply illu-
minated by a single light source, but also receive light that
has been reflected from other objects that coexist in the scene.
Thus, different locations on an object’s surface receive spectrally
different lights from each direction. Consequently, in the proxi-
mal image, there is spatial chromatic variation all over the
object’s surface. Some regions contain more information about
the illumination, whereas others may be dominated by the dif-
fuse component that gives information about surface color.


mailto:takuma.morimoto@psy.ox.ac.uk
mailto:takuma.morimoto@psy.ox.ac.uk
mailto:takuma.morimoto@psy.ox.ac.uk
mailto:takuma.morimoto@psy.ox.ac.uk
mailto:takuma.morimoto@psy.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1364/JOSAA.35.00B244
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.35.00B244&domain=pdf&date_stamp=2018-03-09

Research Article

Estimates of surface reflectance, therefore, potentially require a
local illuminant discounting mechanism. A handful of studies
have considered the influence of multiple illumination regions
[27,28], or multiple illuminations that differ in spectral com-
position and geometry [29,30], or even the effect of spatial
variation across the surface of a glossy object that derives from
scene-dependent lighting effects [31]. However, the effect
of complex environmental illumination that causes abrupt
changes in the light reflected from position to position on
an object’s surface is still under-explored.

Experimental study of complex environmental illumination
is now possible using a computer graphics technique that stores
for a particular point in a scene the incident light from
every direction in the environment [32]. Such environmental
illumination typically varies in spectral composition from one
direction to another. For example, some directions may contain
direct sunlight, whereas others are dominated by skylight, or by
light reflected from other surfaces in the scene. Importantly,
environmental illumination includes not only light emitted
directly from a light source, but also mutual reflections from
surfaces that coexist in the environment. When we render a
test object at the target location within the environment,
the technique allows us to simulate the effect of all incident
light that hits the object’s surface. For computer graphics,
environmental illumination maps are typically stored as an un-
wrapped 2D image in which each pixel contains incident light
from a specific direction. Figure 1(a) shows an example of such
a map and the other components of the rendering process,
along with the resultant chromatic distribution of pixels that
comprise the rendered glossy object. Unlike a flat, matte surface
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under uniform illumination, the image of the surface includes a
wide range of chromaticities.

As mentioned earlier, chromaticities in the image of the
object arise from a combination of two different reflections.
Light from any point on the object’s surface can be expressed
as a linear weighted sum of the diffuse component and the
specular component. Thus, at each point, chromaticity falls
between the chromaticity of the diffuse component and that
of the specular component. Figures 1(b) and 1(c) shows the
chromatic distributions of the diffuse and specular compo-
nents, respectively. A matte object exhibits only diffuse reflec-
tion [Fig. 1(b)], and although chromaticity varies across the
surface, the variance is not large. Conversely, the specular com-
ponent [Fig. 1(c)] reflects the chromaticity distribution of the
surrounding environment, which spreads widely, mainly along
the black-body locus in this case. For comparison, the color
distribution of a glossy object with a single spectral reflectance
viewed under simpler illumination such as a single point light
source is discussed in detail elsewhere [20].

Environmental illumination is complex in that it introduces
spatial chromatic variation on an object’s surface. Some studies
have investigated lightness or gloss perception and estimation of
lighting direction under environmental illuminations [34—36].
Fleming ez al. [37] tested the ability to estimate specularity
(from matte to glossy) and roughness (from crisp to blurred
highlights), and showed that humans judge these properties
well, as long as the spatial structure of the specular reflection
is representative of the real world. With regard to color vision,
Doerschner ez al. [38] investigated the ability to judge the sur-
face color of a matte surface using the method of achromatic
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Rendering objects in natural lighting environments. (a) Schematic illustration of the rendering process using environmental illumination.

The renderer traces light from the environmental illumination to an object with a particular reflectance, and from there to the viewpoint.
The subpanel to the bottom right shows the resultant image of the object and the chromatic distribution of pixels in that image. (b) Chromatic
distribution of the diffuse component. (¢) Chromatic distribution of the specular component. [(a)—(c)] Chromatic distributions are represented in
the MB chromaticity diagram [33]. The black plus symbols indicate equal energy white. The magenta cross symbols indicate the mean chromaticity.

The black dashed line indicates the black-body locus.



B246 Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A

setting, and found that the visual system can eliminate the
influence of environmental illumination from a matte surface.
However, we still know relatively little about our ability to per-
ceive the surface color of glossy objects under environmental
illumination.

The present study specifically aimed to evaluate our ability to
discriminate surface colors (surface spectral reflectance) of
objects with various properties under complex lighting environ-
ments. Such reflectance discrimination could be considered an
extension of color discrimination in the presence of chromatic
noise [39] because a glossy object could be represented as the
diffuse component, which contains the reflectance information,
masked by the specular component. The reflectance discrimina-
tion task also connects to the literature on illuminant
discrimination [40,41] and discrimination of natural objects
with variegated surface reflectance [42]. With objects of spatially
uniform surface spectral reflectance, such as the objects that we
use here, one potential strategy would be to use the mean color
across the whole surface. Alternatively, performance may be sup-
ported by more specific mechanisms that separate the color that
stems from the surface spectral reflectance from the widely
spread chromaticities carried in the specular component.

Experiment 1 aimed to explore potential factors that could in-
fluence our ability to discriminate the surface spectral reflectance
of matte and glossy objects (either spheres or bumpy spheres)
under complex environmental illumination. Experiment 2 was
designed specifically to investigate whether our visual system
exploited the statistical chromatic regularity in the natural
world when making a judgment about an object’s color. In both
experiments, we used carefully controlled computer-generated
stimuli and employed a reflectance-discrimination procedure
to identify how much reflectance change was needed to success-
fully select a stimulus with a different spectral reflectance.

2. METHODS
A. Apparatus

All experiments were computer-controlled and conducted in a
dark room. Stimuli were presented on a cathode ray tube (CRT)
monitor (NEC, FP2141SB, 21 inches, 1600 x 1200 pixels)
controlled with ViSaGe MKII (Cambridge Research Systems),
which allows 14-bit intensity resolution for each phosphor.
Gamma correction was performed with a ColorCAL MKII col-
orimeter (Cambridge Research Systems) and spectral calibration
was performed with a SpectroCAL MKII spectroradiometer
(Cambridge Research Systems). Viewing distance was main-
tained with a chin rest positioned 92 ¢cm from the CRT monitor.
Observers were asked to view the stimuli binocularly.

B. Stimuli

1. Rendering

All stimuli were generated by computer graphics techniques.
The geometry of each scene (locations of the viewpoint or
the camera, an object and an illumination map) was defined us-
ing the 3D modeling software Blender (Blender Foundation).
Then, rendering was conducted using the physically-based ren-
derer Mitsuba. The resulting multispectral images (31 channels,
from 400 nm to 700 nm with 10 nm steps) of the rendered
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objects were converted to LMS cone coordinates based on
Stockman & Sharpe 2° cone fundamentals [43] and then finally
converted to RGB values for display on the calibrated CRT. We
used Rendertoolbox [44] to automate the production of the
multispectral images and MATLAB (MathWorks) to convert
the images to RGB images.

2. Environmental Illlumination

We used two environmental illuminations from a pub-
lically available database [45], namely, “Distant Evening Sun
(Hallstatt)” and “Overcast day at Techgate Donaucity.”
Figure 2 shows images of the environmental illumination
maps (top row) and the color distribution of all pixels.
Environments 1(a) and 2(b) were used for Experiment 1,
whereas Environment 1(a) and its chromatic inversion (c) were
used for Experiment 2. We see that chromaticity is distributed
along the black-body locus for Environments 1 and 2. These
environments were selected to have different mean chromatic-
ities; the mean of Environment 1 is close to equal energy white,
whereas the mean of Environment 2 is displaced from equal
energy white toward blue-green. In Experiment 2, we used a
chromatically inverted environmental illumination to test the
effect of the direction of chromatic variation. More detailed
rationale is provided in the introduction to Experiment 2.
The environmental illuminations were originally 1024 x 512
images with three channels (RGB), but were promoted to mul-
tispectral images within the rendering process by Mitsuba using

a method by Smits [46].
3. Object Shape and Specularity

In Experiment 1, two types of object shape were tested (sphere
and bumpy), whereas in Experiment 2, we used only bumpy
objects. The different object shapes modified the spatial pattern
of specular reflection on the object’s surface. The sphere
provided a spatially clear reflection of the surrounding environ-
ment, whereas the bumpy object provided a distorted reflec-
tion. We used two levels of specularity for both experiments:
a completely matte surface (control) and a glossy surface with
a specular reflectance of 0.20 across all wavelengths as
defined within the Mitsuba renderer, which was set to use
the Ward reflectance model [47].

4. Surface Spectral Reflectance

Measuring thresholds of reflectance discrimination required
continuous and systematic control of the spectral reflectance
of the surface. Thus, we selected eight reflectance functions
as shown in Fig. 3(a) from a database of natural objects
[48—50] and, by combining a spectrally flat (equal energy) re-
flectance with each of the eight reflectances in differing propor-
tions, we controlled the reflectance along eight color directions.
Reflectance functions were specified between 400 nm and
700 nm in 10 nm steps. In Fig. 3(a), each reflectance is nor-
malized by its highest value for the sake of visibility; however, in
the actual experiment, all reflectances were normalized to have
equal luminance under an equal energy white illuminant. The
colored circles in Fig. 3(b) show the chromaticities of the eight
reflectances when rendered under equal energy white. The plus
symbol is the chromaticity of the spectrally flat reflectance
under equal energy white.
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Fig. 2. Chromatic properties of the three lighting environments used in the experiments. (a) Environmental Illumination 1 [“Distant Evening
Sun (Hallstatt)”], used in Experiments 1 and 2. (b) Environmental lllumination 2 (“Overcast day at Techgate Donaucity”), used in Experiment 1.
(c) Chromatically inverted Environmental Illumination 1, used in Experiment 2. [(a)—(c)] The top panel shows a 2D projected image of the 3D
environment map. The middle and bottom panels show, respectively, the 3D and 2D color distributions of the environmental illuminations. The
magenta cross and black plus symbols indicate, respectively, the mean chromaticity of the distribution and the chromaticity of equal energy white.

The black dashed line indicates the black-body locus.

Figures 3(c)-3(f) show the effects of environmental illumi-
nations on the mean chromaticity of objects for all conditions
in Experiment 1. The semi-transparent symbols show the data
points re-plotted from Fig. 3(b) for the purpose of comparison.
We see that Environment 1 only minimally distorts the
arrangement of eight chromaticities, whereas Environment 2
vertically expands the chromatic circle and shifts the overall
position toward higher S/(L 4+ M) and lower L/(L + M).
The effect of shape on mean chromaticity is small, but the
bumpy shape has systematically slightly lower S/(L + M),
because the bumpy object has attached shadows that block
some of the light coming from above (i.e., blue sky in this envi-
ronment map). For glossy objects, however, the change in
reflectance has less influence on the mean chromaticity. We
independently rendered matte objects and glossy objects,
and scaled the corresponding matte and glossy images to keep
the total energy in the environmental illumination constant for
both objects. Consequently, when more light is reflected in the
specular component, less is available for the diffuse component,
so the surface spectral reflectance has less influence on the
proximal image.

C. Observers and Ethical Approval

Three observers (JH, SR, and TM; TM is the first author of the
study) participated in Experiment 1. For Experiment 2, JH and
TM were again recruited along with two additional observers
(AKH, TD). All observers were aged 23 to 26 and had cor-
rected visual acuity and normal color vision as assessed by

Ishihara pseudo-isochromatic plates. This study was approved
by the Medical Sciences Inter-Divisional Research Ecthics
Committee at the University of Oxford, in agreement with
the Declaration of Helsinki.

D. Procedure

Before each block, observers adapted to random-dot 20 Hz
temporal chromatic noise for 2 min [Fig. 4(a)]. The noise con-
sisted of the chromaticities of the eight reflectances under equal
energy white with equal probability.

Thresholds were then measured using an adaptive staircase
method based on the procedure implemented by the Palamedes
toolbox [51]. During each trial, four objects were simultane-
ously presented for 2 s, as shown in Fig. 4(b). The four objects
were always presented from a different camera angle in order to
prevent the observers from comparing the colors of specific
points across objects. We prepared 36 viewpoints (from 0°
to 350° with 10° steps) for each rendered image. On each trial,
the viewpoint for each object was assigned randomly. Three
distractor objects always had a flat reflectance, whereas the
other object, the target, had a reflectance that was biased toward
one of the eight hue directions defined by the eight reflectances.
The observers’ task was to indicate the object that had a differ-
ent reflectance. The observers were instructed to find the object
with a different surface color. There was no fixation point, and
the observers were instructed to move their eyes to look at each
object. A participant’s response determined how the surface re-
flectance of the target object was updated for the next trial:
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Fig. 3. Chromatic properties of the surface spectral reflectance func-
tions used in the experiments. (a) Eight surface reflectances used to
measure reflectance discrimination thresholds from the spectrally flat
reference reflectance. Each reflectance is independently normalized by
its maximum value for the sake of visibility. Note that in the actual
experiments they were normalized so that all reflectance functions
would produce stimuli of equal luminance when rendered under equal
energy white. (b) The colored circles show the chromaticities of the
eight reflectances under equal energy white. The plus symbol shows
the chromaticity of the flat reflectance under equal energy white. The
black dashed line indicates the black-body locus. [(c)—(f)] Effects of
environmental illumination on the mean chromaticity of rendered
objects for the conditions in Experiment 1. The square and triangle
symbols indicate sphere and bumpy conditions, respectively. The
semi-transparent symbols are re-plotted from panel (b), for compari-
son purposes. (c) Matte objects under Environment 1. (d) Matte ob-
jects under Environment 2. (¢) Glossy objects under Environment 1.
(f) Glossy objects under Environment 2.

when the response was incorrect, the update was toward the
target reflectance; when the response was correct, the update
was toward the flat reflectance. There was a 1-s inter-trial in-
terval filled with the same temporal chromatic noise used at the
start of the block. Thresholds for the eight hue directions were
measured in parallel in the same block (eight interleaved stair-
cases). The presentation order of the eight hues was random-
ized. The staircases were judged to have converged when the
standard deviation of the stimulus magnitude of the last 10 tri-
als was smaller than 2% of the prepared stimulus range. This
was a conservative criterion as the standard deviation of the
thresholds was generally larger. In addition, trajectories of all
staircases were manually checked by the experimenter. Each

() Repeat until
eight staircases
converge

120 secs ™

(b)

Fig. 4. Schematic illustration of the procedure. (a) After an initial
adaptation to chromatic noise, a series of 4AFC trials was presented,
until eight interleaved staircases converged. See the main text for de-
tails. (b) An example of stimulus presentation on a single trial. Four
objects were simultancously presented for 2 s. The observer’s task was
to select one with a different spectral reflectance. All objects in a trial
had the same level of specularity (either matte or glossy) and the same
3D shape (either sphere or bumpy). The viewpoint from which the
objects were rendered was different for the four objects presented,
and so the distractors were not identical to one another.

staircase typically needed 20-30 trials to converge. When
one staircase reached the threshold, it dropped out; trials
continued until all eight staircases converged.

One session consisted of eight blocks (conditions) in
Experiment 1 and four blocks in Experiment 2. Specific con-
ditions are detailed in each experimental section. Observers
performed five sessions in total for each experiment. All pro-
cedures, including the observers’ task, were identical for both
experiments.

3. EXPERIMENT 1

Experiment 1 was designed to explore the effects of environ-
mental illumination, specularity, and shape of objects on the
thresholds of reflectance discrimination.

A. Conditions

We wused eight conditions, consisting of combinations
of two environmental illuminations (Environment 1 and
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Table 1. Summary of Conditions in Experiment 1 with
Example Objects That Have Spectrally Flat Reflectance
Functions

Illumination Environment 1 Environment 2

Shape

Sphere  Bumpy  Sphere = Bumpy

) 4 \ £ \
Matte B ) 9’\" )

Environment 2), two specular levels (glossy, and matte as a
control), and two shapes (sphere and bumpy). Table 1 shows
example objects with a spectrally flat reflectance rendered under
settings for all eight conditions.

//ﬂ‘\

Specularity

(a) Reflectance plot

Sphere Bumpy

-’ -4 Matte (>
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Environment 1 Environment 2
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B. Results and Discussion

Figure 5(a) shows thresholds of reflectance discrimination for
all observers. The data were averaged across five repetitions.
Each point indicates the chromaticity of the threshold reflec-
tance under equal energy white. This reflectance-based plot is
not the only way to represent results, but it allows us to com-
pare the results directly across conditions; i.e., overlap of the
plots means that same physical reflectance was chosen as a
threshold. Data are plotted in a scaled MacLeod—Boynton
(MB) chromaticity diagram, where equal energy white corre-
sponds to the origin and each axis is scaled independently
by chromatic discrimination thresholds along L/(L + M)
and §/(L 4+ M) measured prior to the experiment. The left
column shows the results for Environment 1, whereas the
right column shows the results for Environment 2. In the fig-
ures, the cyan circle symbols represent the sphere condition,
whereas the magenta diamond symbols represent the bumpy
condition. The dashed and solid lines are the matte and glossy
conditions, respectively. The black dashed line is the black-
body locus. The red dashed line is the axis that corresponds
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Fig. 5. Results from Experiment 1. (a) Reflectance discrimination thresholds plotted on a reflectance-based plot, where each data point is rep-
resented by the chromaticity of the reflectance function at threshold, viewed under equal energy white. (b) Reflectance discrimination thresholds
plotted on a mean-chromaticity-based plot, where each data point is represented by the mean chromaticity of the object at threshold. (a), (b)
Different rows show data from different observers. Different columns show different environmental illuminations. The black dashed lines indicate
the black-body locus. The red dashed lines in panel (a) indicate the axis that exhibits the maximum variation in chromaticity of the environmental
illumination. Data are plotted in a scaled MB chromaticity diagram, where equal energy white corresponds to the origin and each axis is inde-
pendently scaled by chromatic discrimination thresholds along L/(L + M) and S/(L 4+ M) that were measured prior to the experiment.
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to the maximum variance of chromaticity in the environ-
ment map.

Three notable results emerge from Environment 1. First, the
glossy condition shows a slightly larger discrimination ellipse
than the matte condition. Second, the effect of shape is small.
Third, and importantly, the discrimination ellipse is tilted along
the direction of maximum variability of colors in the environ-
mental illumination (red dashed line). These trends were
consistent across all observers.

For the results in Environment 2, we see generally similar
trends to Environment 1, but the overall ellipses are noticeably
smaller. One of the differences between the two environments
is that chromaticity does not distribute around equal energy
white in Environment 2; this might help observers to separate
the colors that belong to the illumination and those that belong
to the surface.

These results are presented from the perspective of reflec-
tance. However, the actual mean chromaticities of the rendered
objects under each environment are shifted from these points,
as shown in Figs. 3(c)-3(f). Thus, Fig. 5(b) provides another
representation where each point indicates the mean chromatic-
ity of objects with the threshold reflectance. Strictly speaking,
mean chromaticity changes depending on the camera angles
presented, but the effects of viewpoint were averaged.

A simple discrimination model based on mean chromaticity,
which assumes that observers are able to make a discrimination
when the mean chromaticity of the target object becomes far
enough from the mean chromaticity of distractor objects,
would predict circular discrimination ellipses. However, we
see that plotting thresholds in such a way does not eliminate
the elongation of the ellipse or the way it is tuned in color space.
Consequently, the analysis of chromatic thresholds confirms
that we have worse discrimination in a direction that corre-
sponds to the major axis of variation of colors in the environ-
ment. A plausible account would say that spatial color variation
of the specular component is greater in that direction and
selectively masks co-aligned color differences [39] that arise
from reflectance changes.

The enclosed area and the eccentricity of the discrimination
ellipses provide summary measures of discrimination perfor-
mance. Figure 6 allows us to compare the area and eccentricity
for all conditions in terms of the reflectance plot [Figs. 6(a) and
6(c)] and the mean-chromaticity plot [Figs. 6(b) and 6(d)].
Error bars indicate =1 S.E. across observers. From the area plot
[Fig. 6(a)], we see that discrimination is consistently worse
in Environment 1. Plotting in terms of mean chromaticity
[Fig. 6(b)] rather than reflectance reduces the differences
between matte and glossy conditions. The eccentricities of the
ellipses are nearly equal across conditions [Figs. 6(c) and 6(d)]
meaning that the ratio between major and minor axes remained
constant.

A three-way repeated-measures analysis of variance
(ANOVA) was performed using environmental illumination
(Environment 1 and Environment 2), specularity (matte and
glossy), and shape of object (sphere and bumpy) as within-
subject factors for the area of ellipses in the reflectance plot.
We found a significant main effect of environmental illumina-
tion [F(1,2) = 48.8, p = 0.0199], whereas the main effects of
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Fig. 6. Summary of reflectance discrimination performance across
conditions of Experiment 1. (a) Mean area of ellipses measured on the
reflectance-based plot. (b) Mean area of ellipses measured on the
mean-chromaticity-based plot. (c) Mean eccentricity of ellipses mea-
sured on the reflectance-based plot. (d) Mean eccentricity of ellipses
measured on the mean-chromaticity-based plot. Error bars indicate
+1 S.E. across all observers.

specularity and of shape were not significant [F(1,2) = 17.9,
p =0.0516; F(1,2) = 0.58, p = 0.526, respectively]. Also,
no significant interactions were observed [environmental
illumination x specularity, F(1,2) =346, p=0.204;
specularity x shape, F(1,2) = 0.29, p = 0.644; environmen-
tal illumination x shape, F(1,2) = 2.82, p = 0.235; environ-
mental illumination x specularity x shape, F(1,2) = 2.20,
»=0.276].

In the same way, a three-way repeated-measures ANOVA
was performed for the averaged area of ellipses for the mean
chromaticity plot. We again found a significant main effect of
environmental illumination [F(1,2) = 66.3, p = 0.0148],
whereas the main effects of the specularity and shape of objects
were not significant [F(1,2) = 1.2, p = 0.388; F(1,2) =
2.1, p = 0.284, respectively]. Again, no significant interactions
were observed [environmental illumination x specularity,
F(1,2)=1.69, p = 0.323; specularity xshape, F(1,2) =5.35,
p = 0.147; environmental illumination xshape, #(1,2) =6.93,
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p = 0.119; environmental illumination x specularity x shape,
F(1,2) = 0.01, p = 0.929].

For the eccentricity measure, a three-way repeated-measures
ANOVA showed the following results: in terms of the reflec-
tance plot [Fig. 6(c)], we found a significant main effect of spec-
ularity [F(1,2) = 31.7, p = 0.0301], whereas the main effects
of environmental illumination and shape were not significant
[F(1,2) = 13.7, p = 0.0659; F(1,2) = 7.81, p = 0.108, re-
spectively]. Also, the interaction between the three factors was
not significant [environmental illumination x specularity,
F(1,2) = 0.001, p = 0.978; specularity x shape, F(1,2) =
249, p=0.255 environmental illumination x shape,
F(1,2) = 0.001, p = 0.978; environmental illuminationx
specularity x shape, F(1,2) = 1.96, p = 0.296]. In terms of
the mean-chromaticity plot [Fig. 6(d)], we found no significant
main effect of environmental illumination, specularity or shape
[F(1,2) = 2.68, p=0.243; F(1,2) = 10.7, p= 0.0821;
F(1,2) = 3.39, p = 0.207, respectively]. Also, no significant
interaction was observed [environmental illumination x
specularity, F(1,2) = 0.28, p = 0.650; specularity x shape,
F(1,2) = 1.09, p = 0.406; environmental illuminationx
shape, F(1,2) =0.03, p=0.878; environmental illumination x
specularity x shape, F(1,2) = 2.29, p = 0.269].

Therefore, the environment in which objects exist affects
our performance of reflectance discrimination, whereas the
properties of the objects (shape and specularity) have littde
impact.

One of the interesting effects we found in Experiment 1 was
that discrimination ellipses were tuned in a certain way. It is
known that the chromaticities of lights available in natural envi-
ronments are typically distributed along the black-body (or
daylight) locus [52]. If this is the case, then we would likely
have a hue-dependent discrimination ability in general. It
would thus be useful to determine whether the observed elon-
gated ellipse is due to the specific environments under which
stimuli were rendered or if it is due to the variation in natural
environments that we experience in daily life. In other words, it
is possible that sensitivity along the black-body locus is reduced
because we adapt to such a chromatic distribution in daily life.
Such an effect of long-term adaptation to environmental
stimuli has been reported in past studies of color appearance
[53-56], and it may be possible that a similar effect is found
for threshold-based measurements. If that is the case, then
we should observe this tuning effect with whatever scene we
employ in a rendering process. To address this question, we
decided to invert the chromatic distribution of Environment 1
to change the direction of chromatic variation as shown in
Fig. 2(c), and conduct Experiment 2 using the same procedures
as for Experiment 1. There is no unique way to invert the chro-
matic distribution of environmental illumination, but we chose
to first convert RGB values to LMS values, and then to reflect
the chromaticities in a line parallel to the L/(L + M) axis of
MB space, where the inversion axis intersected the L/ (L + M)
value of equal energy white. Colors that were out of gamut as a
result of this inversion were mapped to the gamut boundary (a
manipulation known as “clipping”). Finally, the reverse trans-
formation was performed to return the MB coordinates to RGB
values for rendering and display.

4. EXPERIMENT 2
A. Conditions

In Experiment 2, there were four conditions: a factorial com-
bination of two environmental illuminations (Environment 1
and the inverted environment) and two specular levels (matte,
and glossy). In this experiment, we used only bumpy stimuli.

B. Results and Discussion

Figure 7 shows the results for Experiment 2. We see that
inverting the chromatic distribution of the environment also
inverts the discrimination ellipse. Therefore, the tuned ellipses
observed in Experiment 1 were influenced by the environment
in which the objects were rendered rather than being influenced
solely by the natural environment in which we live. Also,
we found that under the atypical lighting environment, the dis-
crimination ellipses became less elongated, and larger. Figure 8
compares the area and eccentricity of ellipses in both a reflec-
tance-based plot [Figs. 8(a) and 8(c)] and a mean-chromaticity-
based plot [Figs. 8(b) and 8(d)].

A two-way repeated-measures ANOVA was performed us-
ing environmental illumination (Environment 1 and inverted
environment) and specularity (matte and glossy) as within-sub-
ject factors separately for each panel in Fig. 8. For the area mea-
sure, the analysis produced the following results: in terms of
the reflectance plot [Fig. 8(a)], we found a significant main
effect of environmental illumination [F(1,3) = 168.9,
» <0.001] and specularity [F(1,3) = 10.6, p = 0.0473].
The interaction between the two factors was, however, not sig-
nificant. In terms of the mean-chromaticity plot [Fig. 8(b)], we
found a significant main effect of environmental illumination
[F(1,3) = 358.2, p < 0.001], whereas the main effect of spec-
ularity was not significant [F(1,3) = 3.7, p = 0.150]. Again,
no significant interaction was observed. For the eccentricity
measure, the analysis produced the following results: in terms
of the reflectance plot [Fig. 8(c)], we found a significant
main effect of environmental illumination [F(1,3) = 19.8,
p = 0.0211], whereas the main effect of specularity was not
significant  [F(1,3) = 3.06, p = 0.179]. The interaction
between the two factors was not significant. In terms of the
mean-chromaticity plot [Fig. 8(d)], we found a significant main
effect of environmental illumination [F(1,3) = 80.3, p =
0.00293] and of specularity [F(1,3) = 10.7, p = 0.0467].
Again, no significant interaction was observed.

The data from Experiment 2 suggest that discrimination of
spectral reflectances would not work well when the chromatic
distribution of illumination does not follow the way in which
colors distribute in natural environments, i.e., along the black-
body locus. This in turn might imply that our visual system can
exploit the statistical regularity of chromaticities in environ-
mental illumination to separate which color variations across
an object’s surface are likely to arise from the illumination
conditions.

5. GENERAL DISCUSSION
A. Overview

The purpose of the present study was to measure thresholds
of reflectance discrimination for glossy and matte objects
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Environment 1. The axis scaling is the same as in Fig. 5.

under various environmental illuminations. For matte objects,
environmental variation in incident illumination expands the
gamut of chromaticities contained in the diffuse component
of the proximal image of the object [Fig. 1(b)]. For glossy ob-
jects, in addition to this variation in the diffuse component, the
full variation of chromaticities in environmental illumination is
carried unmodified in the specular component [Fig. 1(c)].
For a perfectly color-constant observer, the type of illumina-
tion should not affect the thresholds for reflectance discrimina-
tion. However, the results of Experiment 1 (Figs. 5 and 6)
indicated that reflectance discrimination is actually not constant
across environmental illuminations, suggesting that our ability
to perceive surface color depends on the lighting environment
in which objects are placed. It was also evident that discrimi-
nation ellipses were elongated along the direction of maximum
variance of chromaticities in the environmental illumination
map. The results of Experiment 2 (Figs. 7 and 8), where we
used a chromatically inverted environmental illumination
map, showed that this tuning effect seems to be dominated
by the chromatic distribution of the environment used for ren-
dering rather than a statistical invariance of natural environ-
ments. The chromatically inverted environment additionally
gave rise to larger discrimination ellipses than the typical envi-
ronment. These findings were consistent across all observers.

B. Available Cues

The 4AFC procedure for reflectance discrimination is a relative
judgment that does not necessarily require estimating surface or
illuminant properties. Instead, global statistics, such as mean
chromaticity, may have allowed observers to select the odd-
one-out. It is possible therefore to consider the task as one

of color discrimination in the presence of a chromatic noise
mask, where the noise arises from the spatial variation in inci-
dent illumination. For matte objects, which contain only a
diffuse image component, the spatial chromatic noise is low-
contrast and low-spatial-frequency; however, for glossy objects,
which additionally include a specular image component, the
spatial chromatic noise is high-contrast and contains variation
at many spatial frequencies, including sharp edges. There are
many studies on color discrimination with chromatic noise
[39,42,57]. They essentially show that adding chromatic noise
elongates the discrimination ellipse along the direction in which
the chromaticity of the noise extends. This is consistent with
the obliquely tuned discrimination ellipses we measure: for dif-
ferent illumination environments, the discrimination ellipse re-
liably aligns with the axis of maximum chromatic variation.

One limitation of our study was that stimuli were rendered
from a single viewpoint and therefore presented without bin-
ocular disparity. Since diffuse and specular components differ in
their imaging geometry, it is possible that disparity information
would have helped observers parse the image and judge surface
color. With similar rendered objects under simple illumination,
motion parallax does not improve constancy [58]. However,
depth information may be particularly important in complex
lighting environments.

C. Matte versus Glossy Objects

The chromatic variation across the image of the object is much
greater for glossy objects than for matte objects. Yet observers’
abilities to discriminate spectral reflectances were not
significantly different for the two types of object (no main
effect of specularity for the ANOVA in Experiment 1 or
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conditions of Experiment 2. (a) Mean area of ellipses measured on the
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Experiment 2). The small, consistent, trend observed in both
Experiment 1 and Experiment 2 toward poorer discrimination
performance for glossy objects when analyzed in terms of
reflectance was eliminated or reversed when discrimination
ellipses were plotted with respect to mean chromaticity. This
relative improvement for glossy objects when plotted in chro-
maticity space is consistent with the stimulus properties: when
more light is reflected in the specular component, less is

available for the diffuse component, so a given surface spectral
reflectance has less influence on chromaticities in the proximal
image. However, the overall similarity of performance with
matte and glossy objects is somewhat counterintuitive.

As noted above, glossy objects exhibit much greater varia-
tion in chromaticity across their surface. Thus, previous mea-
surements of color discrimination in noise [39] would predict
higher thresholds for reflectance discrimination of glossy ob-
jects. This raises the possibility that, unlike random chromatic
noise, specular reflections may contain some regularities spe-
cific to the illumination, which may help the visual system
to eliminate the influence of specular reflection effectively.
These regularities may be in the chromatic or spatial properties
of the noise, and we discuss each possibility below.

D. Chromatically Typical and Atypical Lighting
Environments

In addition to the finding that discrimination ellipses align to
the major axis of chromatic variation in the environmental
illumination used for rendering, our second major result was
that discrimination abilities became worse under the atypical
environmental illumination in Experiment 2. This decline in
performance was accompanied by a reduction in the eccentric-
ity of the ellipse. Had discrimination thresholds depended only
on the chromatic distribution of the environmental illumina-
tion used for rendering, there would have been no change in the
overall area of the ellipses between the typical and chromatically
inverted environments, and no change in the eccentricity of the
discrimination ellipses. One explanation would be that, irre-
spective of the particular environment used for rendering,
chromatic change parallel to the black-body locus is likely to
be assigned to the illumination (and not to a surface reflectance)
because chromaticities of lights in natural environments are
distributed along the black-body locus [52,59]. This is consis-
tent with the idea of using priors such as statistical regularities
in natural environments to solve the problem of color con-
stancy [60,61].

The results of Experiment 2 raise the question of whether
the visual system understands the chromatic properties of
specular reflection of incident illumination. Further investiga-
tion is needed to address this question, but it is possible that the
visual system internalizes the chromatic regularities in environ-
mental illumination to separate the diffuse and specular com-
ponents of the proximal image of an object. Indeed, several
studies have reported the importance of the black-body (or day-
light) locus for color vision [40,62]. The chromatic tuning of
natural environmental illumination is heavily determined by
the chromatic tuning of natural illuminants. Conversely, for
object colors, we know that the spectral reflectances of natural
objects are less constrained than the spectral content of natural
illuminants. However, from theoretical arguments, distribu-
tions of spectral reflectances rendered under equal energy white
are expected to show a negative correlation in L/M-opponent
and S-opponent signals [62,63]. We conducted our own analy-
sis and confirmed that the chromaticity of 4824 surface spectral
reflectances of natural objects [48-50] under equal energy
white light is distributed broadly along the black-body locus.
Thus, it seems unlikely that color changes along the black-body
locus could be strongly diagnostic of the difference between
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reflectance-based or illuminant-based variation in the proximal
image. Interestingly, chromaticities in #theDress, which is an
“illusion” that gives rise to observer-dependent color appear-
ance, are also spread along the black-body locus [64,65],
and this may explain why observers have difficulties in separat-
ing surface and illuminant information in this image. The
asymmetric effects of chromatic change along particular direc-
tions in the color space would be an interesting topic to pursue
further.

E. Spatial Signatures of Lighting and Reflectance
Changes

The reflectance discrimination paradigm used here has parallels
with the paradigm of illuminant discrimination [40,41]. The
stimuli for reflectance discrimination offer a single, spatially
uniform, surface spectral reflectance, with complex spatial
variation in incident illumination; the stimuli for illuminant
discrimination offer complex spatial variation in reflectance,
with uniform illumination. Both reflectance discrimination
and illuminant discrimination seem to be poor along the
black-body or daylight locus. An important link between the
two tasks is that they may both depend in part on the discrimi-
nation of mean chromaticity (or low-spatial-frequency chro-
matic signals), which raises the possibility that the chromatic
tuning effects are specific to spatial scale.

In many studies, it has been claimed that the problem of
color constancy is equivalent to a problem of illuminant esti-
mation [1]. That is, once the visual system recognizes the illu-
mination color, the color constancy can be readily implemented
by globally subtracting the illuminant color from the whole
field of the view. This idea has an attractive simplicity, and
it may also be true under constrained situations in which
objects are matte and a scene has only a single light source.
However, the spatial variation in chromaticity and luminance
that derives from the specular component in the image of a
glossy object seems to challenge simple estimates of illuminant
color because local illuminant cancellation is required [31],
which seems to be unrealistic from the perspective of computa-
tional cost. Instead, what the visual system needs is a way to
extract the component that attaches to the surface property
of spectral reflectance.

When the object is a smooth sphere, the specular reflection
preserves the spatial structure of the surrounding environment,
as shown in Fig. 1(a). Thus, one might expect an advantage for
smooth versus bumpy spheres, since smooth spheres might
allow the visual system to more readily understand how the
specular components are distributed on the surface of an object.
However, in the present study, when objects were presented in a
dark void, there was no significant difference in thresholds
between the sphere and bumpy conditions. This suggests that
although the spatial patterning of specular reflections provides
important information about the shape of objects [66], spatial
variations that arise from surface geometry do not have a strong
effect on the ability to judge surface colors. In a follow-up
study, we intend to present rendered objects within the full ren-
dered environment to assess whether contextual information
helps with judgments of surface color.

The study of material perception, especially considering
color-related effects, has started only recently. Such work is

Research Article

expected to provide new insights to understand the color that
is produced by a complex interaction between illumination and
surface properties. At the same time, the field of color con-
stancy needs to move from simplified stimuli toward more
complex stimuli that more fully reflect the properties of real
objects and their lighting environments. This work represents
a preliminary step and it will be important to extend the in-
vestigation to different surface properties, shapes, and lighting
environments so as to assess the generalizability of the findings.
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